-
第41次南极考察:南极中山站的“生命之水”从哪里来(摘自新华网)
来源:《央视网》 (2024年12月25日)http://www.news.cn/science/20241225/f11137810b7e493b98eaefaf9e214805/c.html水是生存要素之一。在中山站,队员们喝的水从哪里来的呢 在中山站区的西南高地上,远远地能看到冰面上有一个绿色的半球形建筑。队员带着走近了才知道,中山站的生命之水就在这片冰面下面。 中国第40次南极考察队中山站越冬队队员张方根:前面这里有一个淡水湖,相当于是雪水融化的,形成了一个淡水湖,常年都有。表面它是冻住的,底部没有冻。这个叫莫愁湖。站上用的水都是从这个湖里过来的。 虽然南极洲上覆盖着巨大的冰盖,组成这些冰盖的淡水资源占据了地球淡水资源的70%以上。但是在南极,很难利用这些淡水资源。目前,南极大陆全境分布着约20个国家的近40个全年科考站,还有运行维护的夏季专用科考站。但并不是每个站都有合适的淡水湖,有的需要通过海水淡化来取水。在中山站,有了莫愁湖,队员们确实不用发愁了。即使是冬天,湖底下的水也不会冻住。 湖心泵房内的温度常年保持20度左右。为了掌握冰下淡水的情况,队员们还会定期来测量冰厚、水位和水质。莫愁湖的水从泵房抽上来,通过这些管路,一直延伸送到发电栋。这些管路里不仅装有保温层,还有电加热,确保水不会被冻住。 在发电栋,不仅有水处理房,还有锅炉房,这样莫愁湖的水在这里就可以进行热交换,供到越冬楼和厨房等,水龙头出来的水就都是温热的。 中国第40次南极考察队中山站越冬队发电班班长张冬:我们相当于一个小城镇,麻雀虽小,五脏俱全。
2024-12-30
-
微生物有大用处
来源:《人民日报》 黄和 (2024年05月08日 第 20版) 面包、酸奶、豆腐、泡菜,这些人们经常享用的食物都与微生物关系密切。顾名思义,微生物是我们瞪大眼睛也难以发现的微小生物。常见的微生物杆菌宽0.5微米,即使80个杆菌“肩并肩”地排列成行,也只有一根头发丝的宽度。当然,万千微生物中也有特殊者,并没有那么微小,比如蘑菇、灵芝。这些或大或小的微生物在食品、农业、医药、环保、能源等领域广泛应用。 小小微生物,是人类生存发展的重要资源,也是科学研究的前沿领域。科学家在观察细菌对抗病毒入侵的过程中,发现细菌通过剪切DNA,解除了病毒的“武装”。受此启发,两位科学家研究出一种基因编辑技术,这一技术像是自带身份识别功能的“小剪刀”,精准剪裁微生物、植物、动物乃至人体的遗传基因。两位科学家凭此在2020年被授予诺贝尔化学奖。 微生物很古老,也很前沿;很微小,也很强大。这个生命的源头,正带给我们越来越多惊喜。 不显山露水,在食品、农业、医药领域大展身手 微生物主要包括细菌、真菌、病毒三大类。细菌是原核细胞型微生物,它像是一间毛坯房,没啥家具,但也能维持正常生活。真菌是真核细胞型微生物,好比一座精装修的房子,家具家电齐全。而病毒是非细胞型微生物,和前两种细胞型微生物截然不同,喜欢利用其他细胞来供养自己。动植物患上病毒性疾病,就是病毒利用动植物细胞来快速繁育子子孙孙。不过,我们不必谈“微”色变,绝大多数微生物对人类生存是有益的,甚至是必要的。人体内微生物数量多达数百万亿个,总重量可超1公斤。 食品加工是人类利用微生物的最早实践。古人利用微生物创制了营养丰富、风味独特、种类繁多的发酵食物。这些食物保存期长,消化吸收率和营养价值高,还包含有益健康的生理活性物质。今天,食品工业领域到处都有微生物的身影。以酶制剂为例,它由传统或经基因改造的微生物发酵、提取制得,具有催化功能,能够改善食品的色、形、味,提升食品的功能和品质,可用于淀粉制品、乳制品、烘焙食品、酒和饮料等的制造。食品酶种类丰富,有用于制作奶酪和酸奶的凝乳酶,有增加肉类鲜嫩程度的木瓜蛋白酶,还有提升面包口感的木聚糖酶、制备功能多肽的蛋白酶,等等。有些食品酶作用独特,乳糖酶分泌少的人可以食用富含乳糖酶的食物,减轻乳糖不耐受症状;纳豆激酶可以溶解血栓、降低血黏度。 往食品的上游追溯,就是农业生产,这也是微生物的用武之地。随着环保和食品安全问题越来越受到重视,微生物农药需求日益增长。微生物农药的最大优势在于,不会像传统化学农药那样产生污染,还可以提升农副产品品质,推动绿色农业发展。以典型的微生物农药赤霉酸为例,它是一种天然的植物生长调节剂,能够促进细胞分裂,增加细胞数量,有利于植物生长发育,进而增加产量。当前,大量杂交水稻制种田通过喷洒赤霉酸来制种,赤霉酸还被广泛应用于棉花、蔬菜、瓜果等的种植,对保障我国农业丰产起到重要作用。 微生物还帮助人们保持健康。人体里的微生物主要寄居在肠道内,它们和免疫系统不断“对话”,像双歧杆菌等益生菌可以产生短链脂肪酸等有益物质,不仅降低炎症疾病发病率,还时刻维持着人体的健康平衡。利用微生物及其代谢产物,可以生产具有多种健康功能的产品。以二十碳五烯酸为例,它是细胞膜的重要成分,帮助维持细胞膜的流动性和稳定性。此外,二十碳五烯酸还在调节炎症反应、降低血压、延缓血栓形成等方面起到关键作用。过去,二十碳五烯酸主要来源于金枪鱼、鲑鱼等深海鱼的鱼油,资源有限,难以满足市场需求。借助微生物发酵技术,人们可以从菌类中提取二十碳五烯酸,缩短了生产周期,有利于其稳定供应,还改善了相关产品的口感和品质。 近年来,人工合成微生物作为活菌药物,为医药领域科技创新打开了一扇窗口。科学家利用新技术,创制了富含酶的高活性细菌药物,罕见病患者吃下去后,可以补充自身缺乏的酶。下一步,若能提高这些酶在体内的作用时间和效率,将为万千罕见病家庭带来希望。在癌症治疗中,微生物经过基因改造,可以成为抗肿瘤药物的“运输车”,携带激活免疫系统的成分,深入化疗等现有疗法难以触及的地方,有望成为抗击癌症的利器。 “小身板”有大能量,助力生态保护和能源开发 在整个地球生态系统中,微生物称得上微小却强大。数十亿年前,微生物就是地球上最早的生命体。在生物圈中,微生物作为“分解者”把动植物遗体、粪便等有机物分解为无机物,回归自然,促进物质循环。没有微生物,地球的生态系统将不复存在。随着研究不断取得突破,微生物在生态保护和能源开发上发挥着越来越大的作用。 比如微生物降解塑料。这些微小的生物,通过其独特的代谢途径和酶系统,能够有效分解塑料,减少塑料污染。链球菌属、假单胞菌属、葡萄球菌属、芽孢杆菌属等细菌,以及曲霉属的一些真菌,都被发现能够降解塑料。特别是塔宾曲霉,在高倍显微镜下,可以观察到其内部的细丝网络像一个高效运转的工厂,分解着塑料内的聚合物。通常情况下,塑料污染物需要10年乃至更长时间才能被自然降解,将这些塑料放到塔宾曲霉面前,几周便被彻底分解。 相比于物理和化学降解,微生物降解塑料更温和、更环保、更可持续。它不需要高温、高压或强酸、强碱等极端条件,只需在适宜的环境下,就能自发降解。微生物降解还可以将塑料转化为有价值的生物降解产物,进一步用于农业、化工等领域,实现资源循环利用。不同种类塑料具有不同的化学结构和稳定性,微生物降解也是“一物降一物”。找到针对不同塑料特性的微生物,提高降解效率,是当前的研究重点。例如通过基因工程技术改造微生物,使其具备更强的降解能力和更广泛的适应性;或者利用微生物共培养技术,构建具有协同降解能力的微生物群落。纳米技术、人工智能、生物反应器等新兴技术,也在与微生物降解塑料技术结合,有望提高微生物降解塑料的效果和可操作性。 寻找替代化石能源的可再生能源,是全世界共同面临的难题。其中,生物乙醇生产就要靠微生物发挥关键作用。通过发酵,微生物可以将纤维素、淀粉等可再生生物资源转化为糖,进而生产出乙醇。微生物发酵生产乙醇不仅环保,而且原料来源广泛,生产成本低。与之相似,微生物也可以通过发酵产出生物柴油和生物甲烷。 能源领域还有一个重点课题,固碳。固碳微生物广泛存在于陆地土壤,这些微生物包括自养型土壤细菌和光能微生物等。它们通过光合作用或化学自养固定二氧化碳,并将其转化为有机物,从而增加土壤有机碳含量,提高土壤肥力。未来,科学家有望开发出新的微生物技术,比如通过优化微藻培养条件和代谢途径进行大规模固碳,减缓全球变暖。 海洋深处的微生物研究是前沿课题。对深海微生物的研究,有助于我们解开生命在极端环境中诞生演化的谜团,为我们理解地球生命本质提供宝贵线索,还为我们探索宇宙生命提供新的视角。在科技应用方面,科幻电影里经常出现的太空采矿,有可能成为微生物利用的新场景。在微重力环境下,微生物能够巧妙地分解岩石,提取出珍贵材料,为长期太空驻留提供资源保障。这种采矿方式不仅高效,而且对环境影响极小,几乎不产生有害物质,是太空资源开发的理想选择之一。现在,科学家们正在发挥聪明才智,探寻微生物的未解之谜。未来,一定会有更多微生物种类被发现,微生物的潜在应用也将得到更加充分的挖掘。(作者为中国工程院院士、南京师范大学副校长)
2024-05-10
-
“塑料化学品”清单出炉,超4000种有害
来源:科学网,2024-3-17 经过一年对科学报告和国家监管数据库的搜索,一个由挪威研究理事会资助的研究小组,编制了一份超过1.6万种“塑料化学品”的清单,并发现其中至少有4200种具有“持久性、生物累积性、流动性或毒性”。相关报告于3月14日发布。 据《自然》报道,这里的“塑料化学品”是指在塑料中发现的或被认为用于合成塑料的化合物,包括了原材料和添加剂,如稳定剂、着色剂等。 “相当惊人。”领导该研究小组的挪威科技大学环境毒理学家MartinWagner说,他们还发现,有1万多种化学品的危害性数据无法获得、9000多种化学品用于制作何种塑料的信息也没有公开。之所以很难获得关于所有这些化学品的可靠信息,部分原因是该行业内很少共享专有信息,这使得汇编已知数据的工作变得更加重要。 “这是迄今最全面的报告。”未参与该研究的瑞典哥德堡大学生态毒理学家BethanieCarneyAlmroth说,“展现出的数字令人不安。” 研究小组指出,许多人认为,现在大多数令人担忧的化学品都是“遗留”的产物,不再真正用于塑料生产,但他们有令人信服的证据,证明大量这类化学品仍在使用中。 “我们在所有主要聚合物类型中发现了400多种令人担忧的化学物质。这令人惊讶。”Wagner补充道。 该报告的发布恰逢联合国开展下一轮全球塑料污染国际条约谈判之际。该条约涉及塑料生产和废物管理的各个方面,包括一份令人担忧的塑料聚合物和化学品清单,其中一些已知会渗入食品、水和环境,对人类和生态系统健康产生影响。有关该条约的讨论将于下个月在加拿大渥太华举行。 报告指出,尽管近1000种有关化学品受到《关于持久性有机污染物的斯德哥尔摩公约》等全球性条约的制约,但仍有3600多种化学品没有受到管制。研究小组认为,应将这些化学物质列入受监管的“红色名单”。该报告还建议相关公司使其生产的塑料中的成分更加透明,以填补信息漏洞。 “令我们感到鼓舞的是,报告强调了提高透明度的必要性。国际化学协会理事会(ICCA)支持这些努力,已在开发添加剂数据库和风险评估框架,为全球监管机构提供关键信息。”美国化学委员会(ACC)副总裁KimberlyWise说。
2024-03-20
-
盘一盘高铁飞机的碳排放量
来源:中国环境报 刘良伟图为高铁与民航碳排放分析评估路线。毛保华供图图为我国城市间旅客出行交通方式分担率统计。毛保华供图注:①数据来源于中国统计年鉴、中华人民共和国交通运输部;②民航客运周转量统计口径为国内航线,不包含国际航线。根据交通运输部此前发布的预测数据,2024年春运期间,全国跨区域人员流动量达90亿人次。而人员流动,最常用的出行工具莫过于高铁和飞机。那么,旅客乘坐高铁、普通列车或坐飞机,会产生多少碳排放民航&高铁,谁的碳排放高长期关注交通工具碳排放的北京交通大学中国综合交通研究中心执行主任毛保华进行了一项有趣的研究并告诉记者:“民航碳排放因子约为高铁的3.6倍—3.9倍。”这是怎么算出来的毛保华介绍,在进行高铁与民航碳排放水平评估的时候,不考虑施工建设产生的碳排放量,仅考虑能源生产排放、基础设施维修养护排放、载运工具运行排放三部分。能源生产排放包括使用电力、燃油等的排放。很容易理解,在这一方面,民航不占优势。因为高铁主要能源为电力,民航运输则依赖航空煤油,而航空煤油含碳量较高。在基础设施方面,高铁涉及站段用能、维修养护等,民航则涉及机场用能等。载运工具阶段主要指的就是旅客出行这个过程。根据毛保华团队的研究,2017年—2019年,我国高铁牵引阶段每人每公里碳排放因子为24.70gCO2—26.27gCO2。考虑到站段用能及铁路维修养护的排放,2019年,我国高铁每人每公里全过程碳排放因子约为30.48gCO2。那么,民航的碳排放情况如何2019年,我国民航飞行过程客运每人每公里碳排放因子为95.3gCO2,较2016年下降13.0%。谈及下降原因,毛保华说:“一是我国民航飞行器技术进步,降低了单位里程飞行器的碳排放量;二是民航上座率逐年上升,2010年—2019年民航平均客座率由80.87%增至86.39%;三是民航平均运距上升,2010年—2019年民航平均运距由1509公里上升至1774公里。”从全过程看,民航客运每人每公里碳排放量约为108.3gCO2—112.9gCO2。其中,飞行阶段占比最大,约为88.0%—94.4%。毛保华说:“根据我们的测算,民航碳排放因子约为高铁的3.6倍—3.9倍。因此,未来,民航动力系统革命对碳排放影响很大。”我国铁路与民航客运周转量反超公路,始于哪一年有人问,我国铁路与民航客运周转量反超公路,始于哪一年答案是:铁路2014年,民航2018年。毛保华说:“2012年以后,我国铁路客运周转量(即一定时期内运送旅客人数与运送距离的乘积)在主要交通方式中的占比开始迅速上升。这与高铁达到10000公里(成网)后,客运服务竞争力显著增强有关。2012年以后,我国高铁网络发展迅速,极大地弥补了铁路客运供给的不足。2014年,铁路完成的客运周转量超过公路,成为我国城市间出行的第一大方式。民航完成的客运周转量也在2018年超过了公路,占据了我国城市间客运业的‘第二把交椅’。”他介绍,根据其团队的研究成果,2010年—2022年间,在高速铁路、民航机场等基础设施建设与经济持续增长的背景下,我国民航和铁路客运周转量占比持续增加。按照以往的统计口径,经过这些年的发展,我国城市间客运结构由以公路为主、铁路为辅逐渐转变为以铁路为主、航空和公路为辅的格局。当然,这里的公路主要针对营业性客运量,如人们熟悉的长途大巴等。如果加上自驾,结果就大不一样了。2024年春运的人员流动量激增至90亿人次,远超2022年春运和2023年春运的数据,主要原因就是交通运输部的统计口径发生了变化。2023年春运之前,客流仅统计铁路、公路、水路、民航的营业性客运量。2023年春运首次引入“人员流动量”概念;在营业性客运量基础上,将全国高速公路小客车人员出行量纳入统计范围。2024年春运,进一步扩大统计口径,将普通国省道小客车人员出行量增列其中。因此,自驾人士在这“90亿”出行大军中有绝对优势。我国居民年人均机动化出行里程近5000公里,如何降碳根据毛保华团队的推算,1998年—2019年,我国居民年人均机动化出行里程从1276公里增加到4969公里,翻了近两番,与经济发展基本同步。毛保华认为,这一方面说明了伴随着我国经济发展水平的提高,居民生活水平也在提升;另一方面,未来尽管人口增速放缓,但居民生活水平提升后,其活动频率也会进一步增高,客运需求仍将不断增长。据统计,英国居民年人均机动化出行里程为10100公里,美国则达到了19201公里。他认为,虽然我国居民生活、居住模式与这些国家不一样,但从差距中可以看出,我国还有很大的上升空间。因此,毛保华判断:“我国高铁与民航已经拥有良好的基础设施条件和巨大的市场空间。从低碳角度看,应更好地发挥我国高铁网络优势,这也符合交通运输系统可持续发展的要求。”具体怎么做他认为,由于民航较高铁的碳排放因子更高,如果未来公路与民航的出行量能够部分向高铁转移,我国客运交通有更大可能在2035年前实现碳达峰。那么,交通领域实现碳达峰应采取哪些措施毛保华强调,应采取有针对性的引导措施。根据运距对高铁和民航市场供给与出行行为选择进行适当引导,对于下好低碳交通这盘“大棋”来说确实是有效手段之一。毛保华说:“从全国范围看,高铁与民航有各自优势,主要竞争距离区间为400公里—1500公里。随着运距上升,民航的碳排放因子会相应下降。因此,民航应更好地发挥其在长运距运输方面的优势。”此外,毛保华认为,应努力提升民航客座利用率,增加未被高铁线网覆盖的地区(支线)机场的航班经停量。虽然随着飞机经停的增加,其碳排放因子会有所增加,但客座率提升可抵消经停带来的碳排放。经停航班票价应低于直达航班,以此吸引更多客流,改善航空企业运营的经济性。毛保华还提出了一些人性化的建议,比如,应研究根据地区经济发展水平差异,实行不同地区线路差异化定价;对于不同速度等级列车、不同时间区间列车实行更大差异化的票价;增加欠发达地区高铁线路上列车在沿途站的停靠频率;针对不同出行群体(如老年人、残疾人、学生等)出台更多价格优惠策略等。可喜的是,相关部门已经有所尝试,如对不同速度、不同时间区间的列车实行差异化票价。相信未来,会有更多有效的方式出现在我们的选择中,推动出行更高效、更绿色。
2024-03-05
-
古树的年龄是怎么测算的?(把自然讲给你听)
来源:人民日报 作者丛日晨 记者董丝雨采访整理古树树龄测算可采用的方法包括文献追踪法、年轮鉴定法、年轮与直径回归估测法、访谈估测法、针测仪测定法、CT扫描测定法、碳14测定法等。在实践中,应根据被测古树的特点,选择多种测定方法,形成一个综合的测定方案古树,指树龄在100年以上的树木,是悠久历史的见证者和讲述者,具有极其重要的历史、文化、生态、科研和经济价值。你知道古树的年龄,是怎么测算出来的吗目前,古树树龄测算可采用的方法包括文献追踪法、年轮鉴定法、年轮与直径回归估测法、访谈估测法、针测仪测定法、CT扫描测定法、碳14测定法等。根据树木健康情况、当地技术条件、设备条件和历史档案资料情况,在不影响树木生长的前提下,选择上述合适的方法进行测算。文献追踪法,是指通过查阅地方志、族谱、历史名人游记及其他历史文献资料,获得古树树龄的相关书面证据。比如北京东城区花市酸枣王,根据《北京市市政卷园林绿化志》记载,植于金代,树龄已800余年。此外,还可以到实地考察,通过走访获得口头证据,推测古树的大致年龄。比如北京延庆区千家店镇长寿岭的古榆树,据村里老人们讲述,祖辈们口口相传为明成祖朱棣在延庆栽下,树龄600余年。文献追踪法和访谈估测法,优点是简单易实施,且成本较低,若树木未被更换过,测算出来的树龄会比较准确。但对于栽植在历史资料匮乏的偏远地区和树龄较高的古树并不适用。因此需要采用科学的方法和先进的仪器设备,进行更精准的测算。年轮是树木在生长过程中,受季节影响形成的一圈形成层。目前树龄测算方法大多依据年轮开展,根据年轮取样方法不同可以分为树盘测定法和生长锥法。其中,树盘测定法是利用死亡的古树树盘测算古树年龄,适用于年轮信息完整且已经死亡的古树;生长锥法是利用生长锥钻取待测树木的木芯,将样本晾干、固定和打磨,通过人工或树木年轮分析仪判读树木年轮,进而推测树龄。此外,针测仪测定法是通过针测仪的钻刺针,测量树木的钻入阻抗,输出生长状况波形图,分析古树实际年龄;CT扫描测定法是通过树干被检查部位的断面立体图像,根据年轮数量推测树龄;碳14测定法则是通过测量树木样品中碳14衰变的程度来进行测算。年轮与直径回归估测法,则是利用本地(本气候区)森林资源清查中同树种的树干解析资料,或利用同树种原木进行树干解析,获得年轮和直径数据,建立年轮与直径回归模型,来测算古树树龄,此方法可克服上述方法中的若干弊端,若加入气象、地形等参数,可获得较为理想的测定效果。虽然以上对古树年龄测算的方法各有优势,但由于受取样及当前技术条件的限制,在准确性方面,均有一定的局限性,有些方法在实际工作中很难推广。因此,应根据被测古树的特点,选择多种测定方法,形成一个综合的测定方案。如文献追踪法结合生长锥法,可以实现对某一古建筑边侧的古树的准确测龄;而采用树盘测定法对死亡的古树树龄的测定,可以推算同一地理、气候条件下同种活古树的树龄。古树树龄测算,是古树保护的一项重要基础性工作,对古树等级的划分、古树价值评价、古树相关执法、古树普查建档、古树保护管理措施的制定等,具有重要意义。科学测算古树树龄,让每一株古树得到有效管护,更好发挥其生态功能和文化价值,成为人与自然和谐共生的生动写照。
2023-11-27
-
为了饮用水安全,科学家还做了这些事
饮用水安全一直关系着国计民生,该项目发现了饮用水天然源风险物质污染的新问题,提出了强化天然源风险物质去除的调控原理,为饮用水安全保障提供了重要的理论和技术基础,推动了环境科学技术基础学科的发展。
2023-11-16
-
人造蛋白质能降解塑料瓶微粒
来源:科技日报 张梦然 西班牙巴塞罗那超级计算中心、催化和石油化学研究所与康普顿斯大学的研究团队联合开发了一种人造蛋白质,其能降解聚对苯二甲酸乙二醇酯(PET)微塑料和纳米塑料,并将其还原为基本成分,从而使它们能够被分解或回收。团队使用了来自草莓海葵的防御蛋白,并通过计算方法设计后添加了新功能。研究结果发表在新一期《自然 催化》杂志上。
2023-10-30
-
金秋树叶为何色彩绚丽?
来源:人民日报黄晓慧 秋天到来,植物叶片里的叶绿素降解,起主导作用的叶红素和叶黄素吸收蓝紫光和绿光,黄光、橙光和红光被反射出来,人眼所见便是黄橙色或红色的树叶金秋时节,层林尽染,树叶有的变红,有的变黄。秋天树叶的色彩为何如此绚丽这其中有什么奥秘这要从人眼对颜色感知的原理说起。人眼能分辨色彩,实际上是对物体反射光线的识别。植物叶片里的叶绿素吸收蓝光、红光的能力很强,当阳光照到叶片上时,蓝光、红光被吸收,绿光—黄光波段的光被反射出来。人眼对绿光最敏感,所以在人眼里,叶片通常是绿色的。秋天到来后,叶绿素的降解使得叶片吸收蓝光和红光的能力逐渐减弱,叶片中残存的叶红素、叶黄素开始起主导作用。叶红素、叶黄素主要吸收蓝紫光和绿光,照在叶片上的黄光、橙光和红光则被反射出来,人眼所见便是黄橙色或红色的树叶。植物生长中充满了生存智慧。众所周知,叶片的主要作用是进行光合作用,并将合成的有机营养输送给树木,以供其生长繁殖。当天气寒冷时,叶片里的水分会结冰、细胞结构会被破坏,失去光合作用的能力,叶片表面的蒸腾作用还将进一步降低树木的温度。因此,为了生存,植物进化出更敏锐的机制,植物体内的光敏色素和隐花色素会根据一天内的光照时长和温度来感知气候变化。秋天到来,白天逐渐变短、温度逐渐变低,光敏色素和隐花色素就会向植物发出信号,随之,植物会迅速合成一种叫作脱落酸的植物激素,可以降解叶绿体及其中的叶绿素,将它们转化为可以运输的有机营养物质返还给枝干;同时,促进叶柄基部逐渐形成离层,降低叶片与母体的连接强度,准备脱落。值得注意的是,松树青绿挺直,无需落叶也能度过秋冬,这是因为松树叶片的构造能抵御蒸腾作用带来的降温,还能合成大量抗冻剂抵抗细胞结冰。而南方气候较温暖,树木更是四季常青。(作者:晁代印,系中国科学院分子植物科学卓越创新中心研究员)
2023-10-26
-
“环保”纸吸可能让你健康不保
作者:许悦 来源:中国科学报
现在越来越多的商家为饮品配备纸吸管,以达到绿色环保的目的。然而,一项近日发表于《食品添加剂与污染物A辑》的新研究发现,这些纸吸管可能并不环保,而且会让使用者健康不保,因为其中含有持久且潜在有毒的化学物质。
在该研究中,比利时研究人员对39个品牌的吸管进行了合成化学物质——多氟和全氟烷基物质(PFAS)的测试。这是世界上第二次、欧洲首次开展此类分析。
2023-09-21
-
曲久辉院士:后疫情时代水环境水生态保护应从四方面着手
来源:人民科普网 2020年环境领域发生最大的事件莫过于新冠肺炎疫情突然爆发,席卷全球。疫情发生后,中国工程院院士、清华大学环境学院特聘教授曲久辉领衔中国工程院相关院士团队,迅速投入“新型冠状病毒感染的肺炎疫情环境风险防控”应急攻关项目,取得全新研究成果。近日,人民网记者围绕水环境水生态领域相关问题对曲久辉院士进行了专访。 水环境水生态病毒安全研究应从认知、溯源、调控和建库四方面着手
2023-09-19